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HIGH ORDER OPTICS OF MULTIPOLE MAGNETS *

Peter Walstrom, Filippo Neri & Tom Mottershead
Los Alamos National Laboratory., Los Alamos, NM 87545

ABSTRACT

\We have developed a new capability to compute third
and fifth order Lie algebra:c transfer maps for a family of
realistic multipole magnets, inciuding dipoles. The general
Hamiltonian is expanded symbolically to arbitrary order.
The vector potential off axis, tor a given multipole sym-
metry, 1s determined from the appropriate magnetic field
gradients and their longitudinal derivatives on axis.

Subroutines to compute the required gradients are
avallable for Halbach REC quadrupoles, and for seneral
multipoles. with the current distribution or a cylindrical
surface specified by a shape {unction. This functi~~ can
he supplied by the user. or selected from interna! options.

Both the reference trajectory. and the map about it
are calculated by numerical integration through the gen-
~ral magnetic field, using module~ GENMAP software.
This allows the calculation of curved reference trajecto-
ries in a general dip~le magnet. as well as offset refer-
rnce trajectories needed for msalignment tolerence stud-
irs  These new calculational capabilities have been added
to the MARYLIE Lie Algebraic beam optics design code.

EQUATIONS OF MOTION

In magnet'c optics, the particle coordinates commonly
used are dunensionless deviations from a reference trajec-
tory. defined as the path of a selected reference particle
through the system. The longitudinal position s of the ref-
rrence particle is taken as the independent variable in place
of the time, arnd the deviations in time of flight (r = cAt)
and energy (p. = —AE /pgc) relative to the reference par-
ticle are taken as new longitudinal coordinates. The tran-
verse momenta are scaled with respect to the design parti-
le momentum: Py = pg/py, Py = py/po. Fot convenience,
we will often denote the vector of these new phase space
roordinates by &= (2, Py, Py r.py).

Whe rxptessd in these new bears coordinates. the
liamiltonian turns out to be essentially the old p, *:

A, L A, A
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(1)

The special tole of the g-component of the vector po-
tenitial should be noted. In regions wheee the transverse
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components of the vector potential vanish, the Hrmilto-
nian has the form of a kinetic term plus a potential 4./ Bp.

Hamiltons equations of motion in beam coordinates
may be written:

dz
— = —{H,zs) =~ H: z, (N

witere the new symbol . H : denotes the "Lie operator”
associated with the Hamiltonian. The action of this dif-
ferential operator on any function f() is defined by the
Poisson bracket with the Hamiltonian: {H, f}.

LIE ALGEBRAIC REPRESENTATION OF
TRANSFER MAPS

The idea of a transfer map is simply that the final state
of a particle is some function of its initial state: I = F(5).
The transter map can also be viewed as an operator M(s)
that converts initial phase space coordinates {at s = 0)) into
final ones: i{s) = M(s):(0). Hamilton's equacions of mo-
tion for :(s) unply corresponding formal equations of mo-
tion for this operator, with the initial conditions M(0) = L.
the identity. The equations have the form

dM(s)
ds

= — H: M(s). H

For a beamline element of length L in which the Hanul-
tonian H 1s constant, this equation may be formally inte-
grated to yisid a map of the form

M=e-L H (4)

The exponential of a Lie operator is called a “Lie Trans-
formation", which mav be defined (for arbitrary f() by
the usual power series for an exponential. The application
of this Lie transform to a general function g(3) thus takes
the form

eg=grifg)+ AL+ %)

The GENMAP 23 routines in MARYLIE 3.0 represent the
map of an optical system in the “reverse factorized” form

M=eloehel ("

where the [, (3) are homogeneous polynonnals of order
m  Substitution of this explicit form into the squation
of motion of the map reducen 1t to a set of covpled non
hinear differential equations for the Lie polynonuals  The
Hamultonian itself, which depends on the vector potential,



must also be Taylor expanded into a series of homogenecus
polynomials:

>
H(Zs)=Y Halis). (

n=1
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Finally, the first order behavior of the system ig¢ taken
out by transforming to the “interaction representation” in
which only deviations from first order motion are consid-
ered. The Interaction Representation of the n** order part
of the Hamultonian is:

HI(:.s) = Ho(R(s)z2.8). (8)

where R(s) is the linear (matrix) part of the map M(s),
whose motion is determined by H, (s) alcne.

After all of this. the equations for f3 and f4 are:

dfs(z.s) _ 1.
as ——H3(~,S). (9)

fs(2,8) _

1 dfalz,8)
S = -H{(:,s>+§ fa(z.8), = =——

Js (10)

These equations are further separated power by power
into coupled non-linear differential equations for the 209
polynomial coefficients (for m = 2, 3, and 4) that represent
the transfer rmap to third order, us used by MARYLIE 3.0.
The GENMAP routines numerically integrate these 209
differential equations.

The fifth order code MARYLIE 5.0 uses m = 2 through
3. for a total of 923 equations to be integrated. The ad-
ditional equations of motion for the fn are more compli-
cated. mvolving multiple Poisson btackets.

REPRESENTATION OF THE VECTOR
POTENTIAL

Giiven the Fourier expansion of the scalar potential

o]

Vi(r8,2)= z('n,(r,:)sin(mO), (1

m=}

a vector potential giving the same field is

)
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A, = Z. Ul L7, (r ).
m=
Here we have choosen a gauge where 4y = () The

sealar potential off-axis may be written

. (=D om - ) e B
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(13)
where -
dndz) = jnvr.l'\)w (14)
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represents the profile of the mth multipole.

This is a general solution to Maxwell equations order
by crder, for arbitrary g,,(z). The problem is thus re-
duced to computing the generalized field gradients on axis
for realistic magnet models. We report here on the imple-
mentation of a family of magnet models representable hy
current sheets on a cylindrical surface.

CURRENT SHEET MAGNETS

Cylindrical current sheets can be used not only to rep-
resent radially thin windings on a cylinder, but also to cal-
culate arbitrary fields in the source-free volume bounded
by a cylindrical surface. In the latter case, fictitious sur-
face currents that produce the same interior fields as com-
plicated outside sources replace them for rapid field calcu-
lation. (For some simple volume field sources, it can be
better to work directly with analytical expressions for the
field from the source). Continucus currents on the surface
of a cylinder of racius a can be represented by a stream
function W(¢, z) of the surface coordinates as follows *:

ov(e.:) NIOW(e.2)
== AL NAALILLY

SRS
Je a d¢

. : (12)
The quantity N/ is introduced to make ¥ dimensionless.
The above prescription produces currents that are auto-
matically divergence-free. The stream function can be used
to find a set of discrete turns that approximate a contin-
uous distribution, since current streamlines are contours
of constant W: to make spiral windings, successive closed
turns are cut and transitions between them are iuserted,
The stream function can be written as a sum of Fourier
components as follows:

V(o z:)= Z wm(z)sin(me). (16)
ms=1

The wp,(2) are called shape foactions. The :n = ) rase
is excluded here because it rey .ires special treatment. If
only asingle m value is present in £q.16 and the boundaries
aiw wwiztionally symmetric, the resultant field has m-nole
# dependence evetywhere. Fot upen boundaries, the scalar
potential produced by the currents of Eq.15 is

N ~ +w
V(r8.2) = &’-”—1(}- 5: sin(rrnH)/ Wy (L) A (7, 2. 2 )dor.

m=|
(17)

The Green's function (7, (r, 2. ) has the form

) : ! :-r)

1
I('Tl- [2:;:]"Qm—* ( dar
{11

where Qm—& i a Legendre function of the second kind of
half-integeal order. (For the closed-boundary case of a sur-
rounding o hinder of infimitely perimeabls taterial, hybed

series solutions contaimimg both ordinary and hypeebohe



Bessel functions have been obtained). Expressions for the
magnetic field and vector potential are easily derived from
Eq.17. For calculation of fields, etc., the Qm -4 are not di-

rectly used; instead, the ﬁ:; factor cancels a factor in the
hypergeometric series expression for Q,,_,; the resultant
expression is regular as r — 0. The generalized on-axis
gradient for a single multipole m was defined in Eq.14.
This limit of Eq.IT 1s

gm{2) = -

poNV1a(2m -~ ! /*m
(m = 1)l2m+t /_

Um(Z)Km (2, 2)dz (19)

x

where

) a a™
Km =5;{[(:_I)2+02]m+l/2}' (20)

If wn(z) is a piecewise continuous polynomial, ex-
act analytic integration of £q.19 can be done. An exact
quadrature subroutine for polynomials of up to the 4th de-
gree in £q.19 is used to calculate gn, and its z derivatives to
arbitrary order. This routine is called by routines for shape
functions of several types, including flattops with square
or rounded edges. a symmetric quartic, etc. Lambertson
colls are represented by two shape functions, the first for
the fundamental with a given m value for the angular de-
penderce, and second for the first allowable harmonic, with
an angular dependence of 3Im. The two shape functions are
represented by a series of parabolic arcs precomputed in an
initialization call. Finally, a user may provide a shape func-
tion in the form of a set of points; these points are then
interpolated by parabolic arcs. The above routines have
heen implemented in MARYLIE, along wi*" a routine for
Halbach REC quadrupoles. The implementation is quite
Hexible allowing almost arbit+ary sequences of overlapping
rlements, as well as fitting and optimization.

EXAMPLE

As an illustration of the new -apabilities, we show some
calculations on a point-to-parallel telescope consisting of
a quadrupole douglet with a concentric bending dipole.
After setting the quadrupoles to obtain a focal point 3.0
m upstream with the dipole off, we turn on the bending
ipole, and refocus the  usdrupoles to compensate for the
fringe fields of the bend. This excercines the curved ref-
arence trajectory, overlngpln’? fringe fields, and fitting ca-
pabilities of the new code. This is the description o? the
telescope in our program input language:

inmitp mult
NyNng 9

sm mult
1 50000000000000

-1 0000006G00000000E-02 | 00000000000000

1200000000000000
am1 mulc

1 10000000000000
1 130000000000000
am2 mulit

1 2™MI0N000HN000NH
1 1a0000000000000
int int

A% 100200
#lines
point

1 ®initp

i *am

1 N0N0GA00Q000000

‘NATAIBAZ1487T254
L Q000000000000

128138243446921583
1 0000000000000

1 *ami

-2 30000000000000

2 91000000000000
3 300000000000000

2 00000000000000
3 00000000000000

1*qm32 1%nt

Fig.1 shows the effect of the uncorrected second and
third order aberrations on the beam divergeace.
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CONCLUSION

The significance of all this is that for the first time we
can compute high order maps of realistic multipole rle-
ments with overlapping fringe fields. Since the routines
have been written for arbitrary m, a basis has been laid
for realistic calculations beyond fifth order. Since the ref-
erence trajectory, and the map about it are calculated by
numerical integration through the general magneti‘c ﬁgld.
we can now calculate the curved reference trajectories in a
general dipole magnet, as well as the offset reference tra-
jectories needed for misalignment tolerance studies.
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